ROYAL ASTRONOMICAL SOCIETY

GEOPHYSICAL SUPPLEMENT

Vol. $6 \quad$ No. $7 \quad 1953$ June

THE HARMONIC ANALYSIS OF THE EARTH'S MAGNETIC FIELD, FOR EPOCH 1942

Sir Harold Spencer fones, F.R.S. and P. f. Melotte

(Received 1952 May I)

Abstract

Summary The results are given of the harmonic analysis of the Admiralty magnetic charts of declination, horizontal intensity and inclination for the epoch 1942.5. Within the limits of observational error, the Earth's magnetic field appears to be entirely of internal origin. There is no evidence of a dipole field of external origin greater than $0 \cdot 1$ per cent of the field of internal origin. The intensity of the dipole field is at present decreasing at a rate of about 5 per cent per century. The geomagnetic poles have a westerly drift at a rate of $4^{\circ} \cdot 5$ per century; the north magnetic dip pole is moving in a direction a little to the west of north, but the south magnetic dip pole appears to be practically stationary. In consequence of the dearth of magnetic data over the oceans since 1929, magnetic charts are becoming less accurate and there is a great need for airborne magnetic surveys of ocean areas.

I. In a paper entitled "The Earth's Magnetic Potential", by Dyson and Furner*, a harmonic analysis of the Earth's magnetic field was given, based on data from the Admiralty Magnetic Charts for 1922. These charts, for magnetic declination, horizontal intensity and inclination, were compiled at the Royal Observatory.
2. Declination charts have been prepared at five-year intervals, while charts for other components of the magnetic field have been prepared at less frequent intervals. Charts for horizontal intensity and inclination, in addition to declination, were last prepared for the epoch 1942.5. In future, in accordance with a recommendation of the Association of Terrestrial Magnetism of the International Union for Geodesy and Geophysics, charts for declination will be produced at five-year intervals, 1955 , ' 60 , ' 65 , etc., and charts for horizontal intensity, vertical intensity, total intensity and inclination at ten-year intervals, 1955, '65, '75, etc. Preparations for the compilation at the Observatory of the complete series of charts for the epoch 1955° o have accordingly been commenced.

[^0]3. Since the unfortunate loss of the non-magnetic ship, the Carnegie, in 1929, practically no magnetic data for the sea areas have been obtained. Both the values of the elements of the field at epoch and their secular change have consequently become increasingly uncertain over the sea areas with lapse of time. It therefore seemed desirable to make a harmonic analysis of the Earth's magnetic field, as depicted by the Admiralty Magnetic Charts for 1942 , in the expectation that it would provide some indication of the regions in which the charted data were seriously in error and that comparison between the analysis for the epochs 1922 and 1942 would provide information about the secular change of the field between those epochs in much greater detail than could be obtained from the scanty observations alone. The analysis was completed in 1945, but pressure of work has hitherto prevented the results from being written up.
4. Values of the declination, horizontal intensity and inclination were read off from the charts at points of a grid spaced at 10° intervals in longitude and latitude between $80^{\circ} \mathrm{N}$. and $80^{\circ} \mathrm{S}$. latitudes. From the values so tabulated, the northerly, easterly and vertical components of the field were calculated; the values of these components are tabulated in Tables I-III.

If the magnetic potential is assumed to arise solely from forces situated inside the Earth, it can be expressed in the usual form :

$$
V=a \sum_{n=0}^{\infty} \sum_{m=0}^{n}\left(\frac{a}{r}\right)^{n+1}\left\{H_{n}{ }^{m}(\lambda)\left(g_{n}{ }^{m} \cos m \phi+h_{n}{ }^{m} \sin m \phi\right)\right\}
$$

where a denotes the radius of the Earth, r the distance from the centre, and $g_{n}{ }^{m}$ and $h_{n}{ }^{m}$ are numerical coefficients,

$$
\begin{aligned}
H_{n}^{m}(\lambda)=\cos ^{m} \lambda\left\{\mu^{n-m}-\right. & \frac{(n-m)(n-m-1)}{2(2 n-\mathrm{I})} \mu^{n-m-2} \\
& \left.+\frac{(n-m)(n-m-\mathrm{I})(n-m-2)(n-m-3)}{2.4(2 n-\mathrm{I})(2 n-3)} \mu^{n-m-4}-\ldots\right\}
\end{aligned}
$$

ϕ is the longitude, λ the latitude, and μ stands for $\sin \lambda$. The nomenclature due to C. F. Gauss and used by J. C. Adams (Collected Papers, Vol. II, " The Theory of Terrestrial Magnetism") is here followed. The symbols g and h are known as the Gauss coefficients.

From this expression, if X, Y, Z denote the northerly, easterly and vertical (downwards) components, it follows that at the surface (where $r=a$):

$$
\begin{aligned}
& X=\frac{\mathrm{I}}{r} \frac{\partial V}{\partial \lambda}=\Sigma \frac{d H_{n}{ }^{m}}{d \lambda}\left\{g_{n}{ }^{m} \cos m \phi+{h_{n}}^{m} \sin m \phi\right\}, \\
& Y=\frac{\mathrm{I}}{r \cos \lambda} \frac{\partial V}{\partial \phi}=\Sigma m H_{n}{ }^{m} \sec \lambda\left\{-g_{n}{ }^{m} \sin m \phi+{h_{n}}^{m} \cos m \phi\right\}, \\
& Z=-\frac{\partial V}{\partial r}=\Sigma(n+\mathrm{I}) H_{n}{ }^{m}\left\{g_{n}{ }^{m} \cos m \phi+{h_{n}}^{m} \sin m \phi\right\} .
\end{aligned}
$$

The first six harmonics were included in the solution.
5. Though the functions $H_{n}{ }^{m}$ have been extensively used in harmonic analysis by Laplace, Gauss, Adams and others, Adolf Schmidt introduced new orthogonal functions, $P_{n}{ }^{m}(\theta)$, defined by
and

$$
\begin{array}{ll}
P_{n}{ }^{m}(\theta)=P_{n, m}(\theta), & \text { when } m=0 \\
P_{n}{ }^{n}(\theta)=\left\{2 \frac{(n-m)!}{(n+m)!}\right\}^{1 / 2} P_{n, m}(\theta), & \text { when } m>0
\end{array}
$$

[^1] $11 \quad 1+\quad+11$

 $1 \quad 1+\quad+1 \quad 1$

$1+\quad+1 \quad 1$

$1+1$

$1+$
$+1 \quad 1$
 $11+1$

 $1+1+1+1$
 $1+1+1+1$
 $1+1+1+1$
 $1+1+1+1$
 $1+1+1+1$

$+11+$
1
A
3

 1 1

 웃

 $++$
where $P_{n, m}$ denotes the associated Legendre function defined by
where
\[

$$
\begin{aligned}
P_{n, m}(\mu) & =\left(\mathrm{I}-\mu^{2}\right)^{m / 2} \frac{d^{m} P_{n}(\mu)}{d \mu^{m}} \\
\mu & =\cos \theta
\end{aligned}
$$
\]

θ being the co-latitude, i.e. $(\pi / 2-\lambda)$.
It is readily shown that $P_{n, m}$ is related to $H_{n}{ }^{m}$ by the relation

$$
\begin{aligned}
P_{n, m} & =\frac{(2 n)!}{2^{n} \cdot n!(n-m)!} H_{n}{ }^{m} \\
& =\frac{(2 n-1)!!}{(n-m)!} H_{n}{ }^{m} .
\end{aligned}
$$

$H_{n}{ }^{m}$ is identical with the function which Schmidt denotes by $P^{n, m}$. It follows that

$$
\begin{aligned}
P_{n}{ }^{m} & =\left\{2 \frac{(n-m)!}{(n+m)!}\right\}^{1 / 2} P_{n, m} \\
& =\left\{2 \frac{(n-m)!}{(n+m)!}\right\}^{1 / 2} \frac{(2 n-1)!!}{(n-m)!} P^{n, m} \\
& =\xi P^{n, m} \quad \text { (say). }
\end{aligned}
$$

The values of $\xi \equiv P_{n}{ }^{m} / P^{n, m}$ for $n=\mathrm{I}$ to $6, m=0$ to 6 have been tabulated by Schmidt.*

The use of the functions $P_{n}{ }^{m}$ in geophysical investigations in preference to the functions $H_{n}{ }^{m}$ has been recommended by S . Chapman. Their properties are described in Geomagnetism, Vol. II, Chap. XVII, by Chapman and Bartels.

Schmidt (loc. cit.) has tabulated the values of the function $P_{n}{ }^{m}(\cos \theta)$ and the associated functions

$$
X_{n}{ }^{m}=d P_{n}{ }^{m}(\cos \theta) / n d \theta ; \quad Y_{n}{ }^{m}=m P_{n}{ }^{m}(\cos \theta) / n \sin \theta
$$

for values of m and n up to 6 and for values of θ (the co-latitude) at intervals of 5° from 0° to 90°. His tables can therefore be used to obtain the values of $d H_{n}{ }^{m} / d \lambda$, $m H_{n}{ }^{m} \sec \lambda$ and $(n+\mathrm{I}) H_{n}{ }^{m}$ in the expressions for X, Y, Z above.
6. Vestine \dagger carried out a harmonic analysis of the U.S. magnetic charts for epoch 1945. He expresses the magnetic potential from internal forces in the form:

$$
V=a \Sigma \Sigma\left(\frac{a}{r}\right)^{n+1} \frac{I}{n} P_{n}{ }^{m}\left(A_{n}{ }^{m} \cos m \phi+B_{n}{ }^{m} \sin m \phi\right)
$$

and, at the surface,

$$
\begin{aligned}
& X=\Sigma X_{n}^{m}\left\{A_{n}{ }^{m} \cos m \phi+B_{n}{ }^{m} \sin m \phi\right\} \\
& Y=\Sigma Y_{n}^{m}\left\{-A_{n}{ }^{m} \sin m \phi+B_{n}{ }^{m} \cos m \phi\right\} \\
& Z=\Sigma \frac{n+\mathrm{I}}{n} P_{n}{ }^{m}\left\{A_{n}{ }^{m} \cos m \phi+B_{n}{ }^{m} \sin m \phi\right\}
\end{aligned}
$$

where $X_{n}{ }^{m}, Y_{n}{ }^{m}, P_{n}{ }^{m}$ are as tabulated by Schmidt.
In the Gaussian notation

$$
X_{n}{ }^{m}=-\frac{\xi}{n} d H_{n}{ }^{m} / d \lambda ; \quad Y_{n}{ }^{m}=\frac{\xi}{n}\left(m H_{n}{ }^{m} \sec \lambda\right) ; \quad P_{n}{ }^{m}=\xi H_{n}{ }^{m} .
$$

[^2]The values of the Gaussian coefficients $g_{n}{ }^{m}, h_{n}{ }^{m}$ are therefore related to the coefficients $A_{n}{ }^{m}, B_{n}{ }^{m}$ used by Vestine by the formulae

$$
g_{n}{ }^{m}=-\frac{\xi}{n} A_{n}{ }^{m} ; \quad h_{n}{ }^{m}=-\frac{\xi}{n} B_{n}{ }^{m} .
$$

These formulae can be used for comparing the results of the analysis by Vestine of the American charts for epoch 1945 with those of the present analysis of the British charts for epoch 1942.

It should be noted that Vestine, in his Table IX, tabulates the first eight Gaussian coefficients of the Earth's magnetic potential from a series of analyses going back to the earliest, by Gauss, I835. These coefficients are $g_{n}{ }^{m}, h_{n}{ }^{m}$ up to the value of 2 for m and n. The tabulated values are not, however, those of the coefficients as defined by Gauss, but those of the coefficients $A_{n}{ }^{m}, B_{n}{ }^{m}$. It is advisable that a distinction should be made in the nomenclature for, and the designation of, the coefficients according to whether the expressions used by Gauss or by Schmidt are adopted.
7. The values of X, Y, Z, given in Tables I, II and III, were analysed to give the g and h coefficients, the different latitude zones being combined together with the relative weights used by Dyson and Furner, viz.:-

Lat.	Wt.	Lat.	Wt.	Lat.	Wt.
0°	Io	$\pm 30^{\circ}$	8	$\pm 60^{\circ}$	3
$\pm 10^{\circ}$	IO	$\pm 40^{\circ}$	7	$\pm 70^{\circ}$	2
$\pm 20^{\circ}$	9	$\pm 50^{\circ}$	5	$\pm 80^{\circ}$	I

These preliminary solutions having been made, the weighted residuals for each latitude zone for each of the solutions were tabulated, and the mean residuals obtained for $\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z}$ separately. The mean residuals corresponding to unit weight for each latitude zone and for each component were then obtained. For X and Y the zonal values ran smoothly, but in Z the scatter was large, particularly in southern latitudes. For each component the mean residual was plotted against latitude and a smooth curve was drawn through the plotted points. The values read off from this curve were adopted as the mean residual for each zone of latitude and for each component. From these values, relative weights were obtained, which represent more accurately the uncertainties in the chart values than the provisional arbitrary weights originally used. The relative weights so derived, which were used in new solutions to obtain the definitive values of the g and h coefficients, are given in Table IV.
8. It will be seen that in general the weight for each component for a southern latitude belt is appreciably less than the weight for the corresponding northern latitude belt. This is because the land areas are more extensive in the northern hemisphere than in the southern; over many of the land areas the magnetic data are reasonably well known from land magnetic surveys, whereas there have been very few magnetic observations in the sea areas since 1929. An additional reason is that there are many more permanent magnetic observatories and secular change repeat stations in the northern hemisphere than in the southern, in consequence of which the secular change data are more reliable for the northern hemisphere than for the southern.

The weights in Table IV have been formed on a uniform basis for each component. It will be noted that the weights in X and Y are of the same order, the
weights in \boldsymbol{Y} being mostly greater than those in X in northern latitudes, but somewhat smaller in southern latitudes. The X and Y values are formed from the observed values of declination and of horizontal intensity; for most of the region of the Earth's surface between $60^{\circ} \mathrm{N}$. and $60^{\circ} \mathrm{S}$. latitude, the declination does not exceed 30°. A given error in H will therefore produce a larger error in X than in Y, while a given error in D will produce a larger error in \boldsymbol{Y} than in X. In the southern Indian Ocean the declination is known to be very uncertain, as in this region the secular change in declination is large, while the rate of change of declination with latitude is also large.

Table IV
Relative Weights for each Latitude Belt and for each Component (X, Y, Z)

Lat.	X	Y	Z
$+80^{\circ}$	1.61	2.06	0.35
70	2.63	3.05	0.46
60	4.35	5.00	0.63
50	.695	7.58	0.87
40	8.62	11.40	1.25
30	10.2	15.2	1.51
20	11.9	19.2	1.54
+10	13.2	20.8	1.39
0	13.9	19.2	1.24
-10	13.5	15.2	1.01
20	11.1	10.9	0.76
30	8.20	7.25	0.53
40	6.17	5.00	0.35
50	3.79	3.47	0.18
60	2.28	1.79	0.15
70	0.74	0.80	0.13
-80	0.36	0.42	0.13

The weights of the vertical intensity are relatively low. This component is formed from the charted values of horizontal intensity and inclination. It seems probable that there are appreciable errors in the inclination: over much of the surface of the globe, moreover, the inclination exceeds 45°, so that the errors in inclination are much enhanced in the vertical intensity.
9. If a portion of the Earth's magnetic field is of external origin, the magnetic potential will be expressible in the form

$$
\begin{aligned}
V= & a \Sigma\left(\frac{a}{r}\right)^{n+1}\left[H_{n}{ }^{m}\left(g_{n}{ }^{m} \cos m \phi+{h_{n}}^{m} \sin m \phi\right)\right] \\
& +a \Sigma\left(\frac{r}{a}\right)^{n}\left[{H_{n}}^{m}\left(g_{-n}{ }^{m} \cos m \phi+h_{-n}{ }^{m} \sin m \phi\right)\right] .
\end{aligned}
$$

The analysis, in the form explained above, by which the coefficients of the terms depending on the longitude are derived will determine

$$
\begin{array}{lc}
\text { for } X, Y & g_{n}{ }^{m}+g_{-n}{ }^{m}, \\
\text { for } \boldsymbol{Z} & g_{n}{ }^{m}-\frac{n}{n+\mathrm{I}} g_{-n}{ }^{m} .
\end{array}
$$

The coefficients determined from the separate analyses of the northerly and easterly components of the magnetic field should therefore agree, apart from the effect of accidental errors. The values of the coefficients obtained from the
analysis of these two components, with the weights first assumed, were in fact in close agreement. A new solution was accordingly made by combining the data for these two components and using the definitive weights given in Table IV. The derived values of the coefficients are given in the second column of Table V. The vertical component was analysed separately, using the definitive weights given in Table IV, and the derived values of the coefficients are given in the third column of Table V.

Io. If there is an external component of the total field the difference between the values of $g_{n}{ }^{m}$ derived separately from $(X+Y)$ and Z is given by $(2 n+1) g_{-n}^{m} /(n+1)$. In comparing the values given in columns 2 and 3 of Table V it should be noted that the values in column 2 have a weight that is seven or eight times the weight of the values in column 3, the combined weight being given in column 5, and that the probable error corresponding to unit weight is about $\pm 0 \cdot 0035$. From an examination of columns 2 and 3 , in conjunction with the relative weights and probable errors, no evidence of the existence of an external component of the field is found. In relation to the probable errors of the various quantities, there are no significant differences between the corresponding values in columns 2 and 3 .

The main portion of the field is represented by the dipole field of a uniformly magnetized sphere (Section 16). The intensity of this field, H_{0}, the co-latitude, θ_{0}, and the longitude, ϕ_{0}, of the northern pole of this field, as derived separately from the north and east and from the vertical components of the field, are as follows:-

	H_{0}	θ_{0}	ϕ_{0}
From X and Y	0.3096 ± 0.0004	$I I^{\circ} \cdot \mathrm{I}$	$-68^{\circ} \cdot 4$
From Z	0.3104 ± 0.0010	$1 I^{\circ} .0$	$-69^{\circ} \cdot 4$

It can be concluded from these results that there is no evidence of a dipole field of external origin which exceeds one-tenth of one per cent of the field of internal origin.

It has therefore been assumed that there is no portion of the Earth's magnetic field that is of external origin. The equations for the $(X+Y)$ and the Z components were therefore combined together with appropriate weights and solved to give the values listed in column 4 of Table V, the relative weights being given in column 5 .
II. It is of some interest to compare the results of the present analysis with the results obtained by Vestine. The charts from which the data for the two analyses were read off differ in epoch by only three years. Though the British and American charts were prepared quite independently, they are based essentially on the same data. But over many areas recent observations are completely lacking and both series of charts consequently have been based in some areas on extrapolation, involving the assessment of the secular change of the Earth's magnetic field and on the rate of change of this secular change.

The comparison between the Gaussian coefficients and the first four harmonics from $(X+Y)$, and from Z, as derived by Vestine and in the present investigation, is given in Table VI.

The agreement between the coefficients derived from the north and east components is satisfactory. The discordances between those derived from the vertical component are appreciably greater, which is to be expected from the

Table V
Values of Coefficients

	$\begin{aligned} & \text { From } \\ & X \text { and } Y \end{aligned}$	$\underset{Z}{\text { From }}$	$\underset{\substack{\text { From } \\ X, Y \text { and } Z \\ \text { (spherical } \\ \text { Earth) }}}{ }$	Relative weights	From X, Y and Z (spheroidal Earth)
$g_{1}{ }^{0}$	$+3038$	$+3047$	+ 3039	97	+3022
$\mathrm{g}_{2}{ }^{0}$	+.0178 +-258	+-0159	+-0176	59	+.0176
$g_{3}{ }^{0}$	-. 0255	-. 0245	-. 0255	28	-. 0292
$\mathrm{ga}_{4}{ }^{\circ}$	-. 0397	-.039 7	-. 0398	12	-. 0385
$g_{80}{ }^{\circ}$	+.030 3	+.021 1	+.0293	5	+.0182
$g_{6}{ }^{\circ}$	-.0210	-.0219	-. 02211	2	-.0142
$g_{1}{ }^{1}$	+.0219	+.020 8	+.0218	193	$+.0218$
$g_{2}{ }^{1}$	-.0512	-. 0476	-.0509	94	-. 0507
$\mathrm{ga}_{1}{ }^{1}$	+.052 4	+.044 3	+.0515	38	+.0508
$g_{4}{ }^{1}$	-. 0405	-. 0329	-.0397	15	-.0384
$g_{5}{ }^{1}$	-. 0302	-. 0426	-.0329	6	-.0342
$g_{6}{ }^{1}$	-. 0075	-.011 7	-.0073	2	--0054
$h_{1}{ }^{1}$	-. 0554	-. 0554	-.0555	193	-. 0553
$h_{h_{1}^{1}}$	+.026 6	+.022 4	+.0260	94	+.0259
$h_{3}{ }^{1}$	+.019 4	+.0162	+ O (90	38	+.0194
$h_{4}{ }^{1}$	-.014 1	-. 0101	-.0139	15	-.0143
h_{5}^{1}	+.006 1	--001 2	+.0057	6	+-0053
$h_{6}{ }^{1}$. 0023	. 0030	-.0026	2	-.0019
$g_{2}{ }^{2}$	-.013 3	-.0159	-.0135	532	-.0135
$g_{8}{ }^{2}$	-. 0239	-. 0194	-.0236	115	-. 0235
$g_{4}{ }^{2}$	-. 0236	-. 0279	-. 0238	32	-. 0234
$g_{5}{ }^{2}$	--013 5	-. 0073	-. 0130		-. 0123
$g_{6}{ }^{2}$	-0010	+-000 5	-. 0007	3	+.0002
$h_{2}{ }^{2}$	-.004 2	-. 0068	-.0044	532	-. 0044
$h_{3}{ }^{2}$	-. 0034	-. 0004	-.0033	115	-.0033
$h_{4}{ }^{2}$	+.008 5	-.001 6	+-0076	32	+-0076
$h_{5}{ }^{2}$	-.002 4	+ 000	-.0018	10	--0017
$h_{6}{ }^{2}$	-.0189	-.0365	-. 0204	3	-.0206
$g_{3}{ }^{3}$	-. 0075	-. 0066	-.0074	983	-. 0074
$g_{4}{ }^{3}$	+-0089	+.005 3	+.0087	139	+.0087
$\mathrm{g}_{5}{ }^{3}$	+.0023	+0129	+.0031	31	+.0033
$g_{6}{ }^{3}$	+.021 7	+orir	+.0210	8	+.0205
$h_{3}{ }^{3}$. 0000	-0017	- 0001	983	-.0001
$h_{4}{ }^{3}$	+-0016	+.005	+.0019	139	+.0019
$h_{5}{ }^{3}$	+-0007	+ +0007	+-0009	3 I	+.0009
$h_{6}{ }^{3}$	+-0008	+.010 0	+-0018	8	+.0017
g_{4}^{4}	-.002 0	+.000 1	--0018	1523	-.0018
$g_{5}{ }^{4}$	+.003 3	+-003 9	+.0034	168	+.0033
$g_{6}{ }^{4}$	+.002 1	-.003 8	+.0017	30	+.0018
$h_{4}{ }^{4}$	+-0010	+.0009	+-0010	1523	+ 0010
h_{5}^{4}	+.003 4	+-0019	+.0032	168	+ $\cdot 0032$
$h_{\text {e }}{ }^{4}$	+.000 8	+.003 1	+.0009	30	+-0009
$\mathrm{g}_{5}{ }^{5}$	+-000 5	+.000 2	+.0005	2189	+.0005
$g_{6}{ }^{5}$	-.000 4	. 000	-.0004	196	-.0004
$h_{5}{ }^{5}$	-.000 5	-.000 4	-.0004	2189	--0004
$h_{6}{ }^{5}$	+.000 5	-.000 6	+.0004	196	+.0005
$g_{0}{ }^{6}$	+-000 6	+ 0003	+.0006	2835	+.0006
$h_{\theta}{ }^{\text {b }}$	$+\cdot 0002$	+ $\cdot 0002$	+.0002	2835	+.0002

relatively low weight of Z from the British charts, as shown by Table IV. The agreement between the coefficients derived from the elements $(X+Y)$ and Z is better from the American charts than from the British; the American charts of vertical intensity are the better.

Table VI
Gaussian coefficients derived by Vestine and by fones and Melotte

	$X+Y$		Difference	Z		Difference
	Vestine	Jones and Melotte		Vestine	Jones and Melotte	
$g_{1}{ }^{\circ}$	$+3057$	$+3038$	+ 0019	+ 3057	+3047	+-0010
$\mathrm{g}_{8}{ }^{\circ}$	+.0190	+.0178	+ 12	+.0179	+.0159	+ 20
$g_{3}{ }^{0}$	$-.0287$	-. 0255	- 32	-. 0267	-. 0245	- 22
88°	-. 0403	-. 0397	- 6	-. 0437	-.039 7	40
$\mathrm{ga}_{1}{ }^{1}$	+.0210	+.0219	- 9	+.022 7	+.020 8	19
$g_{8}{ }^{1}$	-.0512	-.0512	0	-.0510	-. 0476	- 34
$g_{3}{ }^{1}$	+.0519	+.052 4		+.0538	+.044 3	+ 95
$g_{4}{ }^{1}$	-. 0430	-. 0405	- 25	-.0415	-.0329	- 86
$h_{1}{ }^{1}$	-.058 r	-. 0554	- 27	-. 0579	-. 0554	- 25
$h_{2}{ }^{1}$	+.0287	+.026 6	+ 21	+.029 7	+.022 4	+ 73
$h_{3}{ }^{1}$	+.0159	+.019 4	- 35	+.014 3	+.0162	- 19
$h_{4}{ }^{1}$	-.0078	-.014 1	+ 63	--006 4	-.010 1	+ 37
$\mathrm{ga}_{2}{ }^{2}$	-.014 1	-. 0133	-	-.014 4	-.0159	+ 15
$g_{3}{ }^{2}$	-. 0234	-. 0239	+ 5	-. 0233	-. 0194	- 39
$g_{4}{ }^{2}$	-.022 5	-. 0236	+ 11	-.023 2	-. 0279	+ 47
$h_{2}{ }^{2}$	-. 0046	-. 0042		-.004 1	-.006 8	+ 27
$h_{3}{ }^{2}$	-.003 5	-. 0034	-	-.0040	-.000 4	- 36
$h_{4}{ }^{2}$	+.010 8	+.0085	+ 23	+oil 4	-.001 6	+ 130
$g_{3}{ }^{3}$	--006 9	--0075	+ 6	-.007 3	-.006 6	- 7
$g_{4}{ }^{3}$	+.0079	$+\cdot 0089$	10	$+\cdot 0085$	+.005 3	+ 32
$h_{3}{ }^{3}$	-.000 4	. 000	-	. 0000	-.001 7	+ 17
$h_{4}{ }^{3}$	+001 7	+.0016	+	+.0022	+.0050	- 28
$g_{4}{ }^{4}$	-.0022	-.0020	- 2	-.0029	+.000 1	- 30
$h_{4}{ }^{4}$	+-000 9	+ 000	- $\quad 1$	+ ${ }^{\circ} 0009$	+-000 9	-

Vestine has not given the weights of his coefficients; he used the weights that were adopted by Dyson and Furner for combining the data for different latitudes, which give the southern latitudes too great a weight relative to the northern. On the basis of the assumption, which is not strictly correct, that the weights of each coefficient deduced from the X and Y charts are equal in the two investigations, it was found, from a comparison of all the coefficients for the first six harmonics, that the probable error corresponding to unit weight was ± 0.0054. The value obtained in the present investigation was ± 0.0035. The concordance of these two values is sufficiently close, in view of the fact
that the basic assumption about the weights is not strictly accurate, to suggest that the weights of the two determinations are not greatly different and that the discordances between the individual coefficients are mainly accidental.
12. With the adopted values of the coefficients, given in column 4 of Table V, the values of X, Y, Z at each point of the 10° network were computed and compared with the values derived from the charts. The differences between the chart data and the computed values are given for the three elements respectively in Tables VII, VIII and IX. The quantities in these tables necessarily run on the whole smoothly, because the chart data are smoothed to eliminate as far as possible the effects of local magnetic anomalies, while the computed values necessarily run smoothly. Comparison between these tables and the corresponding tables in Dyson and Furner's paper (loc. cit. pp. 85-87) is of interest. In Tables VII and VIII there are several regions in which the residuals are systematic and of appreciable magnitude. The residuals in these tables are larger on the average than those based on the 1922 charts, an indication that the 1942 charts are of lower accuracy than the 1922 charts, as would be expected from the paucity of ocean data since 1929. There is, moreover, little correlation between the corresponding residuals from the 1922 and 1942 charts; if the charts were of high accuracy and the same regions stood out in the same direction at different epochs, it would indicate that the general magnetic field was not represented with adequate accuracy by the six harmonics. The comparison between the 1922 and 1942 residuals suggests that there must be appreciable errors in the secular change field that was adopted for bringing forward observations to the epoch $1942 \cdot 5$ of the later charts, while the large systematic runs of residuals suggest that there are areas where the charts are appreciably in error.

Comparison between the tables clearly shows that the vertical force data are of much lower reliability than those for the north and east components. The largest residuals are found in regions where the errors in horizontal intensity and in inclination are additive and where, in addition, the tangent of the dip has a large value. In middle latitudes (between $50^{\circ} \mathrm{N}$. and $50^{\circ} \mathrm{S}$.) the residuals tend to be larger than those obtained from the 1922 charts, but in the polar caps the very large residuals obtained from the 1922 charts have been reduced.
13. The charts on which this analysis was based were charts of declination, horizontal intensity and inclination. From the values of X, Y and Z computed from the coefficients listed in Table V, the values of these three components were derived. Tables X, XI, XII give the differences between the chart values and the computed values for the three elements declination, horizontal intensity and inclination. Table X is of special interest because of the use of the charts of declination for navigational purposes. Too much regard need not be paid to the large residuals in high north and south latitudes, because of the proximity to the magnetic and geographical poles, which are singular points in the system of isogonals. In latitudes $50^{\circ} \mathrm{S}$. and $60^{\circ} \mathrm{S}$. there are some considerable residuals in the southern Indian Ocean, which suggest that in places in this area the charts may be at least 5° in error. The southern Indian Ocean has been recognized for many years as a difficult region, for not only are the isogonals more closely spaced there than elsewhere, but in addition it is a region where the secular change of declination is both large and ill-determined. It is clear from Table \mathbf{X} that the charts in declination are not of the accuracy that is needed for certain modern developments in navigational aids.

[^3]

[^4]

| \||1 | 1 + ++1++++++ +++++111 | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | |

잉
 $1 \underset{+}{+}+++++++\underset{+}{+}+1 \mid$｜｜｜｜｜｜ $1+++++++++++++++$

 ｜｜｜｜｜｜｜｜｜$++++++++||||+++++++++++++1|$
 ｜｜｜｜｜｜｜｜ $1+++++++++++++++++++++++1 \mid$
 $+\mid$｜｜｜｜｜｜ $1+++++++11++++++++++++++++$

+ + + $1++++++++++$ + + + + +++++++ + + + + + + + + + + + + +

Tabla IX

Z, Vertical Force.

 + 1 べべ1

ต่
जं

 || | | | | | | | | 1 $++++11++++++++++|1| 1+++1$

 $11+11++1++++1++++++++++++|||1| 1$
 +++ | $11++++++++++++++++++++\mid$ | 1 | $1+++++$

[^5]
 © AOp

 H, Horisontal Force. Chart minus Computed. Unit 0.001 gauss

[^6]

 | | | | | | | | | $1+++++++++++++++++++++1 \mid 1$ 1

Chart mimus Computed. Unit $0^{\circ} \cdot 1$
Table XII

䓂

I4. It seemed desirable to redetermine the coefficients, taking into account the spheroidal figure of the Earth. The formulae required for this analysis are given by J. C. Adams in Section VI, Part II of his Collected Papers, Vol. II. They can be summarized as follows:-

$$
\begin{aligned}
H_{n}^{\prime}{ }^{m} & =\sin ^{m} \theta^{\prime} G_{n}^{\prime}{ }_{n}, \\
X_{n}{ }^{m} & =a^{n+2}\left[(n-m) \sin ^{m+1} \theta^{\prime} G_{n}^{\prime}{ }_{n}{ }^{m+1}-m \sin ^{m-1} \theta^{\prime} \cos \theta^{\prime} G_{n}^{\prime}{ }_{n}\right] / r^{n+2} \\
Y_{n}{ }^{m} & =a^{n+2} m \sin ^{m-1} \theta^{\prime} G_{n}^{\prime}{ }_{n}^{m} / r^{n+2}, \\
Z_{n}{ }^{m} & =a^{n+2}(n+1) \sin ^{m} \theta^{\prime} G_{n}^{\prime}{ }_{n}{ }^{m} / r^{n+2}
\end{aligned}
$$

The values of $\ln \left(a^{n} / r^{n}\right)$ for values of n from 1 to 12 ; of $\ln \cos \theta^{\prime}$, of $\ln \sin ^{m} \theta^{\prime}$ for values of m from I to 10 ; and the values of $G^{\prime}{ }_{n}{ }^{m}$ are tabulated in Section II, Part II. r denotes the radius of the Earth and θ^{\prime} the geocentric latitude.

From the values of $X_{n}{ }^{m}, Y_{n}{ }^{m}, Z_{n}{ }^{m}$ are computed the primed quantities defined by

$$
\begin{aligned}
X_{n}^{\prime}{ }^{m} & =X_{n}{ }^{m} \cos \psi+Z_{n}{ }^{m} \sin \psi \\
Y_{n}^{\prime}{ }^{m} & =Y_{n}{ }^{m} \\
Z_{n}^{\prime}{ }_{n}^{m} & =-X_{n}{ }^{m} \sin \psi+Z_{n}{ }^{m} \cos \psi
\end{aligned}
$$

ψ denotes the angle of the vertical; the values of $\ln \cos \psi$ and $\ln \sin \psi$ are tabulated by Adams. Unprimed quantities relate to axes along and at right angles to the radius vector; primed quantities to the normal and tangential components.

The equations

$$
\begin{aligned}
& \Sigma X_{n}^{\prime}{ }_{n}{ }^{\prime} g_{n}{ }^{m}=x_{m}^{\prime}, \\
& \Sigma Y_{n}^{\prime}{ }_{n} g_{n}^{m}=y_{m}^{\prime}, \\
& \Sigma Z_{n}^{\prime}{ }_{n}^{m} g_{n}^{m}=z_{m}^{\prime},
\end{aligned}
$$

with similar equations in $h_{n}{ }^{m}$, are then used to determine the coefficients, the righthand members being derived from the tabulated chart data for the north, east and vertical components, as in the solutions for the spherical Earth. The combining weights for the different latitude zones, given in Table IV, were again used, and a single solution combining the data from all three components of the field was made.

The values of the coefficients from the solution for the spheroidal Earth are given in the last column of Table V. The first six coefficients $\left(g_{n}{ }^{0}\right)$ are changed slightly, but the remaining coefficients are substantially unaltered. The solution does not add anything of special interest to the solution for the spherical Earth and it does not appear that the additional labour involved in the solution for the spheroidal Earth is justified in future harmonic analyses.
15. Comparison between the principal coefficients and those determined from other spherical harmonic analyses, including two determinations of slightly later epoch, are given in Table XIII. The coefficients $g_{1}{ }^{0}, g_{2}{ }^{0}, g_{2}{ }^{2}$ and $h_{2}{ }^{1}$ appear to change linearly with the time, $h_{2}{ }^{1}$ having the most rapid rate of change. The change in $g_{1}{ }^{1}$ appears not to be linear and is slower now than a century ago. The values of $g_{2}{ }^{1}$ and $h_{1}{ }^{1}$ show a considerable scatter but no appreciable change with time is apparent.

$$
\text { G } 3 \mathrm{I}^{*}
$$

The values of the other coefficients have been compared with their values as found by Adams for the epochs 1845 and 1880, by Dyson and Furner for 1922, and by Vestine and others for 1945. The coefficients of a number of the higher harmonic terms show appreciable changes in the course of a century; $g_{5}{ }^{0}, g_{3}{ }^{1}$, $g_{4}{ }^{1}, h_{5}{ }^{1}, g_{4}{ }^{2}, g_{5}{ }^{2}, g_{6}{ }^{2}, h_{6}{ }^{2}$ are those that show the largest and most systematic changes. The fact that many of the coefficients change so rapidly is an indication of the complicated structure of the secular change field.

Table XIII
Values of principal coefficients

		$g_{1}{ }^{0}$	$g_{2}{ }^{0}$	$g_{1}{ }^{1}$	$g_{2}{ }^{1}$	$g_{2}{ }^{2}$	$h_{1}{ }^{1}$	$h_{2}{ }^{1}$	$h_{\mathbf{2}}{ }^{\mathbf{2}}$
Erman-Petersen	1829	+3201	+ 12	+284	-445	+ 12	-601	+ 7	-127
Gauss	1835	3235	- 76	311	505	$+$	625	21	136
Adams	1845	3219	- 13	278	49	- 4	578	+ 18	16
Adams	1880	3168	+ 73	243	514	53	603	129	129
Schmidt	1885	3168	75	222	48r	56	595	123	129
Fritsche	1885	3164	53	241	495	59	591	130	23
Dyson \& Furner	1922	3095	133	226	518	125	592	215	73
Jones \& Melotte	1942	3039	176	218	509	135	555	260	44
Afanasieva	1945	3032	187	229	498	130	590	253	42
Vestine \& Lange	1945	+3	$+$	$+$	-512	-141		+287	-46

16. The first-order harmonic, which corresponds to the dipole field, is given by

$$
g_{1}{ }^{0} \sin \lambda+\left(g_{1}{ }^{1} \cos \phi+h_{1}{ }^{1} \sin \phi\right) \cos \lambda .
$$

Writing

$$
g_{1}{ }^{0}=H_{0} \cos \theta_{0} ; g_{1}{ }^{1}=H_{0} \sin \theta_{0} \cos \phi_{0} ; h_{1}{ }^{1}=H_{0} \sin \theta_{0} \sin \phi_{0}
$$

H_{0} gives the intensity of the dipole field; θ_{0}, ϕ_{0} are the colatitude and the longitude of the northern pole of the dipole field, or the northern geomagnetic pole. The southern geomagnetic pole is the antipodal point to the northern: these poles are to be distinguished from the magnetic dip poles.

The values of H_{0}, θ_{0} and ϕ_{0} are given in Table XIV. The positions of the two poles from the present analysis are $78^{\circ} \cdot 9 \mathrm{~N} ., 68^{\circ} \cdot 5 \mathrm{~W}$., and $78^{\circ} \cdot 9 \mathrm{~S} ., 11 I^{\circ} \cdot 5 \mathrm{E}$.

Table XIV
The Dipole Field

	Epoch	H_{0}	θ_{0}	ϕ_{0}
Erman-Petersen	1829	${ }^{3} 269$	$11{ }^{\circ} 7$	-64.7
Gauss	1835	$\cdot 3309$	$12 \cdot 1$	$63 \cdot 5$
Adams	1845	$\cdot 3282$	11.2	64.3
Adams	1880	$\cdot 3234$	11.6	68.0
Schmidt	1885	$\cdot 323$ I	$11 \cdot 3$	69.5
Fritsche	1885	-3228	11.4	67.8
Dyson \& Furner	1922	-3159	11.6	69.1
Jones \& Melotte	1942	-3097	III	68.5
Afanasieva	1945	$\cdot 3097$	11.1	68.8
Vestine \& Lange	1945	-3119	11.4	70

The values of $H_{0}, \theta_{0}, \phi_{9}$ can be represented by the formulae:

$$
\begin{aligned}
H_{0} & =0.3187-0.0170(T-1900), \\
\theta_{0} & =11^{\circ} \cdot 4-0^{\circ} \cdot 4(T-1900), \\
-\phi_{0} & =67^{\circ} .8+4^{\circ} .5(T-1900),
\end{aligned}
$$

where T is measured in centuries.

Computed isogonals for north polar regions

Computed isogonals for south polar region

It will be seen that during the period covered by these analyses the intensity of the dipole field has progressively decreased, the rate being about 5 per cent per century. The latitudes of the geomagnetic poles have not changed appreciably, but the northern pole shows a progressive movement westwards, and the southern pole a corresponding movement, of $4^{\circ} \cdot 5$ of longitude per century.
17. The geomagnetic poles, on the dipole axis, are not the same as the magnetic dip poles, the two points on the Earth's surface at which the horizontal intensity vanishes and the inclination or dip has the value of 90°. In the construction of the charts, the positions adopted in the 1942 charts for the north and south magnetic poles were $7 \mathrm{I}^{\circ} \mathrm{N} ., 96^{\circ} \mathrm{W} . ; 7 \mathrm{I}_{\frac{1}{2}}{ }^{\circ} \mathrm{S}$., $15 \mathrm{I}^{\circ} \mathrm{E}$. respectively. The position of the north magnetic pole is practically the position determined by Amundsen from observations in the Boothia Peninsula between 1903 November and 1905 May and is within one degree of the position assigned by Ross in 1831, the agreement suggesting that the movement of the pole is slight.

In the course of the preparation of the Admiralty Magnetic Charts for 1922, a complete revision of the north polar area was made by one of us, by constructing first the projected lines of magnetic force.* The following comment was made:
"It will be seen that the revision has considerably reduced the residuals which, however, are still systematic in their nature. It does not seem possible to reduce them further whilst adhering to the position which has been adopted for the magnetic pole. A better fit could have been obtained if a position about 2° further north had been adopted."
Nevertheless, as there had been no observations in the vicinity of the north magnetic pole, the Amundsen position continued to be used, not only in the British charts but in those of other countries.

The south magnetic pole has never been reached and there has been no detailed survey round it. The position assigned for the 1922 and 1942 charts was based on the observations in the vicinity of the magnetic pole obtained by Shackleton's expedition of 1907-09, and Mawson's expedition of 1911-14.
18. Charts for the polar areas of the different elements were constructed by computing the values of the elements at intervals of $2 \frac{1}{2}^{\circ}$ of latitude and of 10° of longitude, from latitude $67 \frac{1}{2}^{\circ}$ to the pole; from these charts the positions of the magnetic poles were derived both for a spherical and for a spheroidal Earth. Positions were assigned by Dyson and Furner from their analysis of the 1922 charts, but no information is given as to how they were derived.

The comparison between the assumed and the computed positions is as follows:-
N. Mag. Pole S. Mag. Pole

Assumed (observations c. 1910)
Dyson and Furner (1922)
Jones and Melotte (1942)
Spherical Earth
Spheroidal Earth

Mag. Pole	S. Mag. Pole
$7 \mathrm{I}^{\circ} \mathrm{N} ., 96^{\circ} \mathrm{W}$.	$7 \mathrm{I} \frac{1}{2}^{\circ} \mathrm{S} ., \mathrm{I} 5 \mathrm{I}^{\circ} \mathrm{E}$.
$75^{\circ} \mathrm{N} ., 100^{\circ} \mathrm{W}$.	$7 \mathrm{I}^{\circ} \mathrm{S} ., 15 \mathrm{I}^{\circ} \mathrm{E}$.
$77^{\circ} \mathrm{N} ., 103 \frac{1}{2}^{\circ} \mathrm{W}$.	$7 \mathrm{I}^{\circ} \mathrm{S} ., 150 \frac{1}{2}^{\circ} \mathrm{E}$.
$76^{\circ} \mathrm{N} ., \mathrm{roz}^{\circ} \mathrm{W}$.	$70^{\circ} \mathrm{S} ., 150^{\circ} \mathrm{E}$

The differences between the assumed and computed position of the north magnetic pole seemed to be appreciably larger than would be expected from the general uncertainty of the chart data, while the comparison with the determination by Dyson and Furner suggested that this pole had moved in a direction

[^7]slightly to the west of north since its position was determined by Amundsen. For the south magnetic pole the assumed and computed positions were in as good agreement as could be expected from the uncertainties attaching to both of them.
19. When plans for the north polar flights of the Lancastrian aircraft Aries from the Empire Air Navigation School, Shawbury, were under consideration in 1945, it was therefore suggested that a flight should be made over both the Amundsen position of the north magnetic pole and the computed position. The data provided by two flights in May 1945 indicated that the true position of the pole was probably between these two positions but nearer to the computed position; the inference was that the position of the north magnetic pole in 1945 was approximately $74^{\circ} \mathrm{N}$., $100^{\circ} \mathrm{W}$. The flights provided the first definite information that the pole had moved considerably northwards since Amundsen's observations in 1904. Since that date, independent confirmatory evidence has been provided by ground observations in the Canadian Eastern Arctic, arranged by the Dominion Observatory, Ottawa. In a report made in 1947 May to the Royal Astronomical Society of Canada, R. Glen Madill stated that the Dominion Observatory had for many years been fully aware that the magnetic pole was travelling in a northerly direction, this conclusion being based on the convergence of the isogonals based on observations made periodically at a number of repeat stations extending from Newfoundland to Alaska. During recent years the network of stations occupied by observers from the Dominion Observatory has been extended considerably northwards. In 1946 observations were made in Denmark Bay, Victoria Island, and Fort Ross, Somerset Island; during the summer of 1947 a full-scale airborne expedition made extensive observations at ten stations throughout the Northwest Territories, six of which were on the islands in the vicinity of the north magnetic pole. The mean position of the magnetic pole derived from these observations is $73 \frac{1}{2}^{\circ} \mathrm{N}$., $100^{\circ} \mathrm{W}$. This position will be adopted in the Admiralty magnetic charts for 1955 which are now being prepared at the Royal Greenwich Observatory.
20. In each of the polar regions the system of isogonals possesses two singular points, the geographical and magnetic dip poles. The structure of the isogonals is of some complexity and very few observational data have been obtained in recent years. The isogonals can best be constructed by computation from the harmonic analysis. In the two plates the isogonals derived in this way are depicted for the north and south polar areas. The positions adopted for the magnetic dip poles are the computed positions; though for the north polar area the computed position and the observed position are somewhat discordant, the charts can serve as a guide in future magnetic chart construction, being adjusted where necessary as observational data become available.

[^8]
[^0]: * F. Dyson and H. Furner, M.N., Geophys. Suppl., 1, 76, 1923.

[^1]: (i)

 凶ं $\dot{3}$

[^2]: * A. Schmidt, Tafeln der Normierten Kugelfunctionen, Gotha, 1935, p. 20.
 \dagger E. H. Vestine and others, The Geomagnetic Field, Its Description and Analysis, Carnegie Institution, Washington. Publication 580, 1947.

[^3]: a่
 मं 3
 3

[^4]: ต่
 जi

[^5]:

[^6]:

[^7]: * H. Spencer Jones, Geographical fournal, 62, 419, 1923.

[^8]: Royal Greenwich Observatory, Herstmonceux Castle, Sussex:
 1952 April 29.

